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ABSTRACT

This paper is the final in a series of three in which we have discussed

a finite element post-processing technique. Here we shall deal with tit

questions of adaptive mesh selection and a posteriori error estimation.

Some numerical examples computed by the FEARS program will be used to il-

lustrate the approaches taken.
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§. Introduction

This is the final in a series of three papers in which we have sought

to show how a suitable post-processing of a finite element solution (on,

yield accurate pointwise values for quantities such as displacements,

stresses, flow rates and stress intensity factors. In [1] and [2] we de-

rived a number of extraction expressions for such quantities in the setting

of some simple model problems, and saw how these expressions could serve as

the bases of effective post-processing techniques. We also carried out

an error analysis for such post-processing computations. This analysis

showed that the accuracy of the post-processed value could be related to

how well the space of finite element functions is able to approximate both

the solution of the basic problem and the solution of a related auxiliary

problem. This auxiliary problem is of the same form as the basic problem,

though with different loading data. (See §2.5 and §3.4 of [1]; and §4 of

• [2] .)

Hitherto, except for a few qualitative remarks, we have said litt

concerning the issues of

(i) choosing a finite element subspace for calculating the approxi-

mate solution which is to be subsequently post-processed;

(ii) estimating, a posteriori, the error in a computed post-processed

value.

The significance of both (i) and (ii) is quite clear. In practice,

the goal of any post-processing computation is to obtain a post-processed

value of a specified accuracy at a minimal total computational cost. An
LI

estimate as in (ii) provides a means of determining when the specified

accuracy has been attained, whereas the choice in (i) largely determines

the efficiency of the overall numerical procedure.

I.
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In this paper we propose a post-processing algorithm. It is baseoi

on the extraction techniques of [11 and [2], and includes features that

enable (i) and (ii) to be handled qtuite effectively. Our discussion will

be in the context of the "membrane" model problems already introduced j-, .5

of [1] and §6 of [21. In these the order of the elements employed iP

fixed (square bilinear elements are used), and (i) becomes a matter of

choosing a finite element mesh (i.e., nodal points). The manner in which

we iealize Mi) and (ii) will make use of some of the features available in

the FEARS program. In §2 of this paper we briefly describe the relevant

features of FEARS. In§3.1 we review the error analysis of our earlier papers

[11 and [2] and show how this analysis suggests some a posteriori error

estimates that can be computed within the FEARS framework. These a

posteriori estimates are the basis of the proposed algorithm,which we des-

cribe in §3.2. Finally, in §4 we return to some of the numerial examples

of §5 of (1] and §6 of [2], this time concentrating on some new aspects

which are related to the issues Mi) and (ii).

u°
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§2. The FEARS program

FEARS is a research oriented, adaptive finite element code developed

at the University of Maryland. A detailed description of the operation

of the program can be found in [3]. For the purposes of this paper, the

following few remarks will suffice. As already explained in [2], FEARS

assumes that the region under consideration has firstly been partitioned

into a number of subregions, each of which is a curvilinear quadrilateral.

Within the program, each of these subregions is transformed by a change

of coordinates into a unit square. The actual finite element modelling

is carried out on these transformed squares. Square bilinear elements

are used. FEARS has an adaptive character: starting from an initial

coarse mesh (usually uniform on each of the transformed squares), the

program automatically selects, in a recursive fashion, a sequence of

"optimal" mesh refinements.

The mesh refinement procedure is based upon a set of non-negativ-

error indicators. An indicator, nA say, is associated with each

element A. It is calculated only using information about the finite

element solution on A itself and on the immediately adjacent elements.

These error indicators, when summed over all elements to obtain

(2.1) = L
"4 all elements

7, say, yield an estimate for some user specified measure of the error In

4 the finite element solution. Typically, this measure is closely related

to the energy of the error. (Later we shall say a little more. See :3
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and §4.) Each step in the refinement process is directed towards minimizing

the sum E of (2.1) in some "optimal" fashion. To this end, all elements

A of an existing mesh whose error indicators n exceed a threshold value

are subdivided. This threshold is determined from some information on the

past history of the refinement process. Of course, the character of the

meshes constructed by FEARS will depend upon which error measure has been

specified. This reflects the fact that the quality of a mesh is not an

. absolute property, but must be viewed relative to the ultimate goal of the

finite element calculation. We shall elaborate further upon the point in

§4.

In FEARS the finite element equations are solved by a direct method.

Usually, after each refinement step a full new solution is calculated and

a new set of error indicators is found. However, calculating a new solu-

tion each time is quite expensive, and as it is just an intermediate step,

only being used to compute the new error indicators for the next refinE-

ment step, one would like to avoid it, if possible. FEARS has a numbet

of "economy" modes which do this to varying degrees. In these a full

solution is computed only after a specified increase in the total number

of elements has occurred since the last full solution. After any ref:ine-

ment step between two such full solution phases, the new error indicators

are only approximated on the basis of the past history of the local

refinement process. This "economy" mode permits a multi-level refinement

to take place between two full solutions. This possibility is partic-

ularly desirable for efficient operation for problems with severe singli-

larities. Provided the number of such "short passes" between full solu-

tion steps is not too great, the resulting refinement pattern does not

6.
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differ too much from that obtained by the all full solution method, but,

of course, with a considerable saving in computaional cost.

* Estimates such as e of (2.1), as well as being the basis of the

automatic mesh refinement feature of FEARS, also provide a means of a

posteriori error estimation. Of course, we cannot expect that the esti-

mate c should yield the exact value of the specified error measure.

However, under suitable assumptions, estimates may be calculated that are

asymptotically exact. That is, if e denotes the exact value of the de-

sired error measure, then

e c(l+o(1)) as e 0.

To illustrate some of the points made above, let us return to

Example A of §6 of [2]. In that example we considered the boundary value

problem

V 2= 0 in 0

W 0 on 1

(2.2)
"- 0 on 

2

an 2

S-an = x2 on F3,

where 0 is the unit circle slit along the positive x1 axis and 1 ,

-2 and r3 are as shown in Fig. 1. In [2] we reported on a sequence

of five adaptively refined meshes that FEARS constructed for this problem

(see §6.2 of [2]). We can now be more specific. The mesh refinement

process for this example relied upon error indicators q for which the

0A
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(0,) (6)?( =

Fiur 1) 5

The region for the model problem (2.2)

sum E of (2.1) is an asymptotically exact estimate for the strain energy

measure e 0 vwL)1 2dA of the error in the finite element solution

w. As we saw in [2], the meshes so constructed yield a rate of conver-

% /2

gence for the strain energy norm e 12of the error that is close to the

theoretically optimal rate of O(N , where N is the number of

degrees-of-freedom of the finite element model. In contrast, uniform

4- ---1.. 18r2 _<,:

meshes would only give an O(N ) rate. In Table 1 we have listed

e1/2 and c1/2 for each of our meshes. Notice the E apertobe1/2a
e

converging to 1, as it should, since F is an asymptotically exact

estimate for e. For this problem FEARS was executed in ane cnomy"

mode, so permitting multi-level refinements between full solutions (the

--dgee-ffreo o h finteeleen model- -. In contrat, unifor
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meshes I-V that we have referred to here and in [2] are a selection of

meshes created by full solution steps). The efficiency of the "economy"

mode can be gauged by the fact that the total solution time for mesh V

and all earlier full solutions was only about 2..5 times the solution

time for mesh V alone.

112 112
MESH LABEL e C 12 -

(degrees-of-freedom) true error norm estimated error norm

I (el/2/E (w)l/2)

I .6577 .3747 .57
(56) (30.9%)

1I .5156 .3544 .69
(89) (24.2%)

111 .3875 .3108 .80
(118) (18.2%)

IV .2622 .2434 .93
(171) (12.3%)

V .1618 .1638 1.01
(391) (7.6%)

1/2TABLE 1. A posteriori estimates of the error in the energy norm e
for the example of §2. (E(w) =f,,j7w1

2dA).

i
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§3.1. A Posteriori Error Estimates

For the model problems discussed in §5 of [1] and in [2] we saw that

the difference between the exact value D of some quantity (e.g. dis-

placement, stress, stress intensity factor) associated with the exact

solution w of a problem and an approximate value ! obtained by suit-

ably post-processing the finite element solution w could be expressed

as

(3.1) f- = L V(w-W).V( -)dA,

where ,p and are the exact and finite element solutions respectively

of an auxiliary problem. This auxiliary problem is of the same form as

the basic problem for wi, though with different loading data. The ioad-

ing data is determined by the particular extraction functions used in the

post-processing calculations.

For any function u, let E(u) denote the "membrane" strain energy

of U,

E(u) = Ivul 2dA.

After a little algebraic manipulation (3.1) may be rewritten as

(3.2) = [E(( +)- - E((-) - (-)1.

Furthermore, the following inequalities also follow from (3.1),

(3.3a) - E(,-.I) I / 2 E(W-O)1/2

(3.3b) q¢ - $1 ! (E(w-;) +
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for any real number a > 0. Notice that whereas (3.2) is an exact ex-

pression for the error 4-, in general (3.3a) and (3.3b) only yield

* upper bounds for 14-  They fail to take account of any cancellation

in the integral(3.1). The inequality (3.3a) becomes an equality only if

( -) and (p - )are multiples of one another. (The inequality (3.3b)

i* . is a equality only in the more particular case (a- ) =

One way to think of this cancellation phenomena is in terms of the

"angle" between the errors (w--) and (,-i) Let N be the angle

lying between 00 and 90' for which
-j

i I f V(w-cg)V(p-iPldAi

cos(3.4) Cos = 1I ~ w ) 1/2 E 0_ 1/2

Then, y = 0(cos f=l) corresponds to the case for which (3.3a) is an

equality, while y = 900 (cos y=0 ) indicates complete cancellation in

the integral (3.1). Continuing the geometrical analogy, we could say

that in the case y = 00, the errors (w-j) and (p- ) are "parallel,"

and in the case y = 900 they are "perpendicular."

Means of estimating the quantities appearing on the right hand sides

of (3.2) and (3.3) are available in FEARS. If i is the finite element

solution of a problem whose exact solution is u, let E0( = ( aT())
A

be an asymptotically exact estimate for E(u-i) which is constructed

0-
* from elementary error indicators (u). That is,

E(u-6) = 0 (u)(l+o(l)) as E(u-a) 0

So (3.2) gives,

6
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1- 0 + 0 00
(3.5) -. )-+ o(1)1C 0 + + C

and (3.3) leads to

0 1/2 0 1/2
(3.6a) G,- C< G( () (1+0(1))

(3.6b) K - _2(E0() + a 2CO())(l+° ( I ))

where the o(i) term is valid as E(w -5) + E( 1 - ) 0.

The equation (3.5) suggests that the quantity

1 0 -- 0
(3.7) Cl = (+) - G I

should provide a good estimate for the error D - provided the o (1)

term is negligible. However, if the o(l) term in (3.5) is comparable

to 0 0 then £1 is no longer reliable. In casesi 0 (G+ ) +F0 (W_ )

where the angle y defined in (3.4) is close to 90*, then p may be quite

small and E1 could well perform poorly. Turning now to (3.6), we see

that, at least asymptotically, the quantities

0 1/2 0-l1/2
(3.8a) 2 ( ) 1/2

(3.8b) I3 0 2C0

give upper bounds for - - From what we have said before it can be

seen that the extent of the asymptotic overestimation of 1q - ;I by

£ 2 is closely related to the angle y. For y near 00, .2 is

•---------------- -•. S.
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asymptotically a very sharp estimate for j, - , whereas if y is

close to 90, c2 will be a considerable overestimate.

02

i,
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3.2. The Numerical Algorithm

Let us now briefly list some features of the algorithm that we men-

tioned in the Introduction:

(a) Instead of only solving for W-, solutions for both w- and

are calculated. This is not as labourious as it may at first seem, since

* . the auxiliary problem for ip and the basic problem for (, differ only

* in their loading data. Thus, they may be thought of as the solutions of

a multiple load problem.

(b) The pair of solutions and are computed for a sequence

of adaptively refined meshes using the FEARS program. The mesh refine-

ment steps are based on the particular choice of error indicators

(3.9) rA -1 0 2 20

(39)2a(nGO) n Ai)

where a~ > 0 is some user chosen constant. The choice (3.9) is obviously

suggested by (3.6b). The logic being that with this choice the adaptive

mesh refinement process is directed by an "optimal" minimization of the

estimate 6 Recall that asymptotically c is,in general,only an

upper bound for J - the degree of overestimation being determined

by, amongst other factors, the angle y and the value of a~. It would

seem preferable to employ error indicators whose sum provided a sharper

estimate than (3.6b). Unfortunately, the two other estimates E and

:2that we have available cannot be expressed in the form (2.1). In

the case of c£, choosing n= 1 -n wi) would not always
1 A Vn (w+iP) A(Ol)

ensure that > 0. Th'i estimate c 2cannot be conveniently written as

an element by element sum, though by a proper choice of a the values

d+

0'
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of E2 and F3 can be made close. We shall say a little more about this

later.

(c) Although cI and £2 cannot be used in the role described in

(b), they can still nonetheless be computed as global quantities and be

employed as a posteriori error estimates. As such, the provide a means

of stopping the mesh refinement process once sufficient accuracy has been

attained. Of course, ci would provide a superior estimate to c2 as

long as the above-mentioned loss of reliability associated with angles

near 90 does not occur.

-•I
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§4. Numerical Examples

§4.1. The membrane ExampLes of §5 of [11

Let us reconsider the example that we first discussed in §5 of [I].

.1 In that example we dealt with the boundary value problem.

V = -1 in 2 (ii)

(4.1)

"= 0 on the boundary 9.rl of Q.

H s 10 (0,0)
; 

(-I, I) 
R(I,I)

~V2 

W=_l

C =0 P (I,0)
0(010)

Figure 2

The region for for the model problem (4.1)

...-. 

oo
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One of our goals in that example was to find approximate values for the

" ~ stress" w2 =- at P(1,0) (see Fig. 2). In [I we presented three

different extraction expressions for this stress. These extraction ex-

pressions differed in the way that they handled the boundary conditions

for the generating function. Here we shall only further discuss the

case (c) of §5.3 of [11; that is, we consider post-processing calcula-

tions based on the extraction expression

L (4.2) )() { dA + dA

where

(x F(1 ) x1- x - x

The auxiliary problem associated with (4.2) is

V2 = v2 in

(4.3)

,- = 0 on P,

which, as it should be, is of the same form as (4.1) but with different

right hand sides.

In [11 we saw that (4.2) led to highly accurate approximations for

21' even in the case of quite coarse meshes. The numerical results we

reported there were for a sequence of uniform meshes. At the time we

did not comment on this particular selection of meshes, Qualitatively

however, such a choice would not seem unreasonable from the viewpoint of

'•o
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the theory we developed in [1] and [2]. The solutions of both the basic

problem (4.1) and the auxiliary problem (4.3) are relatively smooth.

.2. Thus, uniform meshes would seem appropriate. In fact, the adaptive mesh

refinement algorithm that we outlined in §3.2 exactly reproduces this

sequence of meshes, independently of a.

Using the estimates given in §3.1 we are able to estimate the error

in the post-processed value . For the above meshes, Table 2 lists a
2

selection of a posteriori estimates for i 2 - 2 based on (3.7) and

(3.8). Notice that in the case of c the ratio of the estimated error

to the true error in $2 appears to converge to 1 as the mesh size is

decreased. This is consistent with (3.5). On the other hand, for

and E the corresponding ratios each seem to stabilize around values

greater than I as the mesh is refined. Again, this is expected on the

basis of (3.6) which shows that L: and E3 will, in general, asymptote

to upper bounds for the error. Let us also remark that since c2 gives.2

only a slight overestimation of ID2 - 2I and E behaves quite well,

we should expect that the angle y bezween (w-5) and (W- ) is not

too close to 90* . In Table 2 we have listed an estimate for this angle

which confirms this expectation. Notice also the interesting fact that

S is almost independent of the mesh.

0- -
0O
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No. of elements in quarter
segment (uniform mesh) 4 16 1 64

1 2

reaeerror in standaress d 20.95(% ) 253-3.3(3

stress value l.9(3

- 2!I~l)(1.5%) (.37%) i (.089%)

agebetween (w-w) and 37.10 j 37. 0086

estimated error

(IL 2  21)

1l 0.351(-3) 2.599(-3) 0.641(-3)

(.986) (1.018) (1.006)

£2 12.976(-3) 3.255(-3) 0 .820(-3)

(1.236) (1.275) (1.287)

C3 24.412(-3) 6.444(-3) 1 .689(-3)

(2.326) (2.524) j (2.651)

TABLE 2. A posteriori estimates of the error in :2 for the example lis-

cussed in § 4. 1. £ 1 F (A~ _0(1 - F0G)12C0,12

E 1 - - 42
* £~3 -i(£ +£ Ii)
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§4.2. The Slit Membrane Example of §6.2 of [2]

In this section we shall return to Example A of §6 of [2]. We have

already used this example in §2 of this paper to illustrate some of the

features of the FEARS program. The governing equations and boundary con-

ditions are given in (2.2) and depicted in Fig. 1. As in [21, let us be

interested in using post-processing techniques to find approximations to

the leading stress intensity factor k1 . Recall that k was defined to

be the coefficient of the leading term in the asymptotic expansion

-/ =0 3/4
(4.4) k, 1 r 4 sin 4 + O(r (k = 1.35812)

for w in the vicinity of the slit tip (0,0). Here we shall only treat

post-processing calculations bascd upon the extraction expression

(4.5) k = (x2 -Vi ds
r3

where

= 2 -1/4 0-- r sin-.

The expression (4.5) is an instance of what we have been calling a

generalized influence function method. The auxiliary function introduced

in the error analysis of the extraction expression (4.5) is

0 ' ,2 = 0 in

." = 0 on P1
'" (4.6)

_ - 0 on r

on 2

n n 3
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By chance, in this case, we can explicitly solve (4.6) to obtain

( 2 1/4 0
(4.7) - r sin

which is just a multiple of the leading term in the expansion (4.4) of

W. (Of course, we cannot expect to be able to do this so simply in

general.)

As explained in §2, the meshes we considered there and in [2] for

this problem were constructed by FEARS using the error indicator ri A

0A (w). (That is, on the basis of minimizing the estimate c of the strain

energy E(w- ) of the error.) Strictly speaking, this indicator does not

fit into the framework we outlined in (b) of §3.2; though, it can be

thought of as a limiting case as a 0. However, executing the algorithm

of §3.2 with a number of choices of a leads to sequences of meshes which,

though different from those above, show much the same refinement charac-

teristics. For this reason, and since we want our numerical results here

to complement those of [21, we shall work with the same sequence of meshes

constructed for this problem in [2].

To try to see why the character of the meshes constructed above should

be independent of a let us rewrite (4.4) as

[.-- w = klrl 4 sin - + w0

4/ 0

(4.8)

1 k2 + WO

where 0= (r 3 . Let 0 be the finite element solution that would

be obtained were the loading in (2.2) such that w0 was the exact solu-

tion. By the linearity of the model problem,

I.

4
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w = k 2 + ' 00

and consequently

(4.9) 2 k1j(p-p) +w 0 -W 0

The function w is relatively smooth in comparison with (. however,

from our point of view the relative magnitude of the factor k _7 is

equally important. If it is sufficiently large, then (*-0) will

make the major contribution to the error w - w; while if it is small

enough, then for meshes that are not too fine, the w- contribution

will dominate. As long as the first case applies, then an "ideal" finite

element mesh would exhibit a severe refinement about the slit tip at

(0,0), while if the latter case applies a more uniform mesh is called

for, at least to begin with. Which case actually occurs in this problem

is clearly demonstrated by the results shown in Table 3-for the level of

refinement encountered there the - W contribution is relatively

small. It is not surprising then, that regardless of whether the mesh

refinement process is directed towards minimizing E(w-w), E(O-) or

- 2
some combination E(w-w) + a2 E(*-p), the resulting meshes will not be

significantly different. However, we should point out, and the trend in

Table 3 shows this, that at some point the magnitude of the two components

in (4.9) will become comparable. At that point, the different choices of

a will lead to meshes of significantly different natures.
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!::::.. Ik1  2 1 0(- ) /  E , 0,) /

esh Label /-,'"._ E( - ) I1/2 E( /
E E (-w)o

: .98 .21

II 1.02 .22

III .99 .25

IV .96 .34

V .94 .38

TABLE 3. Magnitude of the kI  ( -4) and (w0 -430 ) components

of the error (- -w).

In Table 4 we list a number of different a posteriori estimates ot

the error in k for the above sequence of meshes, along with the exact

values of the error and the angle y which are able to be found analyt-

ically for this particular problem. The apparent asymptotic exactness

of Ei is consistent with (3.5) and the fact that the angle y is
'11

rather small. The estimates E2 and F3 appear to lead to upper bounds

for Ik1-Yl. Since the angle y is near 0* we would expect that u 2

would, in the limit, give only a slight overestimation of the error.

Again the numerical results in Table 4 are consistent with this.

S
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Mesh Label ii9 (11)I I
(degrees-of-freedom) (56) (89) (118) (171) (391)

,_ ____
,.. kl -+i1

error in post-processed
stress intensity factor .193860 .123570 .067090 .029140 .010690

(k -ll/Ijkl() (14.3%) (9.1%) (4.9%) (2.1%) (.79%)

angle between (- ,')
and (p) (see (3.4)) 12.00 12.50 14;60 20.10 22.4

estimated error

1..054270 .055086 .039720 .022281 .010163

(.28) (.45) (.59) (.76) (.95)

E 2  .059839 .059906 .043795 .025825 .011576

(.31) (.48) (.65) (.89) (1.08)

C 3  .082962 .077077 .058214 .035249 .015912

(.43) (.62) (.87) (1.21) (1.49)

TABLE 4. A posteriori error estimates for Ik1 -, 1 1 for the example (,I 4.2.
:.: ' 0 (..)- (w-_) i - 0(,)1 0( )1/2,
." G _1 (q)) 0 o , FE).

I2
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4.3. A Modification of the Slit Membrane Example of 6.2 of [21

Let us now alter the basic problem (2.2) that we have been consider-

ing in §4.2 by modifying the loading so as to reduce the leading stress

intensity factor by an order of magnitude or so. Specifically, in place

of (2.2) consider

|2,

V 2i = 0 in 9

= 0 on

(4.10)

* =* 0 on
- n '2

W_ I= x (1.3 sink4 on

which has the exact solution w,* = w + 1.3 r1 / 4 sin 8-, where w is the4

solution of (2.2). The leading stress intensity factor for w* is

k = k + 1.3 -.058122.
1 1

The algorithm §3.2 was executed for this problem with the following

three different choices of error indicator nA of (3.9) governing the

mesh construction process:

4 (A) nA 0 n0(&o*) (This can be thought of as a limiting form of (3.9) as

a - 0, the normalizing factor - of (3.9) having no effect on the re-

finement process.)

(B) =fT (nA(w*) + 1( B - 2 A A

0-(C) nA =n () (Thiscanbethoughtasalimiting form of (3.9) as cx-.
iA
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Some numerical results for a selection of meshes obtained using evah

of these indicators is reported in Table 5. The first thing to notice from

Table 5 is the very significant differences between the meshes created

using each of the above three indicators. As the "distribution of elements"

columns show, strategy (C) leads to meshes that concentrate elements ii the

inner subregions near the slit tip, while (B) and (A) produce progressively

less severe refinement. This effect can be readily explained: In place of

(4.9) we now have,

(4.11) W* * = + (wy.,4

and since fk*1 is now significantly smaller than 1kl1 , we can no longer

regard the (wO- 0 ) contribution to the error as negligible, as we could

in §4.2. Indeed, for the initial uniform mesh I*, from which each of our

strategies (A), (B) and (C) starts,

= .20 and 0 .98

whihialos xl(f*-t*)h E(*-*) 1/2

which is almost an exact reversal of the situation for mesh I in §4.2

(see Table 3). Therefore, it is to be expected that strategy (A), which

seeks to minimize E(w*-w*); strategy (B), which seeks to minimize

-(E(w*-W*) + E(O- )); and strategy (C), which seeks to minimize

E( -u*), will now lead to meshes that are of a quite different nature

from the very start. The meshes produced by (C) should exhibit the
I

severest refinement, reflecting the fact that such a refinement is

necessary to approximate the singular function t well. On the other

.S
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hand, (A) should produce the most uniform-like mesh, since early on, thlt

smooth component w -0 dominates the error ( *-J*). and uniform-like
00

meshes are sufficient to approximate (A) well. The actual meshes pro-

duced are in accord with these expectations.

Notice also that the meshes produced by the algorithm seem to have

achieved their respective goals in some "optimal" fashion, at least in

comparison to one another. Among the meshes III*, III* and III*, each of
A B C'

which has a comparable number of degrees-of-freedom. the mesh III* has
A

the lowest value for E(w*-4*) (see column headed A ) , the mesh III*
AB

has the lowest value for - (E(w*-w*) + - E(,-*)) (see column headed

AB). while the mesh III* has the smallest energy error in (p-.) (see
B C

column headed AC).

Let us now turn to the accuracy in the post-processed value k* for

L- the various meshes. As we have said previously, this accuracy is dependent

not only on the accuracy of * but also on the accuracy of . Referring

to Table 5, we see that the meshes 11* and III*, though yielding good
A A'

d accuracies for W* in the energy, are the worst members from among the

sets II* and III* respectively as far as the accuracy of $* in energy is

concerned. Not surprisingly then, the accuracy of for the meshes

II* and III* is inferior to that for the corresponding meshes constructed
A A

*using strategies (B) and (C). The question obviously arises as to what

is the choice of a for use in (3.9) that gives the best accuracy in k*
I

for a given number of degrees-of-freedom. This is a difficult matter to

analyse in detail, though the results of Table 5 seem to indicate that,

at least fe this problem, the results are rather insensitive to non-zero

choices of a. As a rough guide though, and this is how we chose our

I~I ." , • b % & " -* • " - , , _ , , . - -. - .
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= , a could be selected so that for the initial uniform mesh,

F 0(A,) and a q)) are about equal. The logic behind this (ihoiF(,

. being that this a approximately equalizes C3 and the asymptoticallv

sharper estimate c2 (at least for the initial uniform mesh). Although

-- . we had no need to do so in our calculations, one could possibly change a

during the course of the calculations to ensure that E and E2  always

remain close to one another.

Finally, let us say a little about the a posteriori estimates for

Ik*-k*l based upon i 2 and £3. Some numerical results for the mesh

sequence I*, II* and III* are reported in Table 6. We also list the
B B

value of the angle y between the errors (, *-w*) and (-,). For

this problem we are able to calculate y exactly. Notice that these

angles are rather close to the critical value y 900. As we explained

in §3.1, for such values of y we expect the estimate El to be un-

reliable due to the significance of the second term of (3.5). In addi-

tion, the estimate E should be a considerable overestimation of

lk*-k*l. Our numerical results seem to confirm both these points.

In general of course, we cannot calculate y, and so in a case such

as the above we could, just on the basis of EI be deceived into believ-

ing that there is greater accuracy in k* than is actually the case.

However, the fact that E and F: differ by an order of magnitude or
tt

so should act as a warning that we are more than likely in a near critical

case. (In fact, the ratio - is an estimate for cos y.) In such a si-
c2

tuation, F 1 should not be trusted, while C 2 could be used to gauge the

accuracy of k*, realizing however, that it is probably a considerable

overestimation of the error.

".-.



Mesh Label B* I 11*

(degrees-of-freedom) (56) (117) (339)

lkl-k I*

error in post-processed .8357(-2) .2239(-2) .0717(-2)
stress intensity factor

(k-kl, - /Ik*I) (14.4%) (3.85%) (1.23%)

angle between (a*-*) 78.50 84.00 82.80

and (,- ) (see (3.4))

estimated error

- 11

i .2360(-2) .1566(-2) .0103(-2)

(.28) (.70) (.14)

2 i.7513(-2) 1.4005(-2) .5170(-2)

(2.10) (6.26) (7.21)

1.9150(-2) 1.4042(-2) .5174(-2)• . 3

(2.29) (6.27) (7.2?)

TABLE 6. A posteriori estimates for )k*-k*l for the example of §4.3.

1 - 0((j,_), F2 = (,) 1 /2 0(),
1 4 2

3 = (CO( ,) + I EO(,))• 3 2 5
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§5. Concluding Remarks

Our main intention in this paper was to examine the behaviour of the

algorithm of §3.2 in some model post-processing applications, concentrating

especially on the mesh selection and error estimation features of the algorithm.

As far as accuracy of the post-processed value was concerned, the particular

examples dealt with here proved rather insensitive to the choice

of a in the error indicator (3.9). In our most extreme example the spread

in accuracy for the same number of degrees-of-freedom, was only by a fac-

tor of 2. Whether this insensitivity is a property to be expected In

general is an open question at the moment. However, we can at least say

from a theoretical point of view that some dependence on o is to be

expected whenever the basic and auxiliary problems have solutions with dif-

ferent "smoothness" characteristics.

Our examples also show that, except for the critical casp when is

near 90, the error estimates ri and F2 perform well asymptotically.

The occurrence of the critical case can be detected numerically by the

c2
fact that - > 5, say. In this critical case, even though £1 appears

unreliable, E2 still seems to provide a useable estimate, albeit an

overly pessimistic one.

I.
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